Review Article

Applications of Phytomedicines in Chondrocytes and Osteocytes Regeneration Therapy: Pre-Clinical and Clinical Studies

Abstract

Phytomedicines, also known as plant-derived drugs, possess preventive and therapeutic effects. Herbal medicines exert a wide range of biological and medicinal properties along with beneficial advantages, including less side-effects and lower costs compared to their chemical counterparts. Herbal derivates form basis of many available chemical medicines such as Atropine, Hyoscyamine, Quinine, Colchicine, Digoxin, Codeine, and Morphine. Asian and African populations consume herbal medicine for therapeutic purposes by 60-80%. In the United States, 25% of pharmaceutical medications have at least one herbal-derived ingredient in their structure. Regenerative Medicine (RM) employs stem cells and tissue engineering technology to restore injured cells and repair tissue damage. Stem cells are undifferentiated cells, which can be differentiated into numerous cells. Mesenchymal Stem Cells (MSCs) as multipotent stem cells are the most frequently used stem cells in RM, which can be differentiated into several cell types such as adipocytes, osteocytes, and chondrocytes. Bone disorders and cartilage injuries are not responsive to currently available therapies; thus, researchers have focused on herbal-based stem cell therapies. The present study aimed to review the mechanism underlying the therapeutic application of phytomedicines in the RM and their efficacy in osteogenesis and chondrogenesis.

Mukeshwar P, Debnath M, Gupta S, Chikara SK. Phytomedicine: An ancient approach turning into future potential source of therapeutics. J Pharmacogn Phytotherapy 2011;3:27-37.

Srivastava A, Srivastava P, Pandey A, Khanna V, Pant A. Phytomedicine: A potential alternative medicine in controlling neurological disorders. New Look to Phytomedicine. Elsevier. 2019; pp 625-55.

Sajid M, Cameotra SS, Khan MSA, Ahmad I. Nanoparticle-based delivery of phytomedicines: challenges and opportunities. New Look to phytomedicine. Elsevier. 2019; pp 597-623.

Nagalingam A. Drug delivery aspects of herbal medicines.

Japanese Kampo Medicines for the Treatment of Common Diseases: Focus on Inflammation 2017; pp 143-164.

Yousefi-Manesh H, Aghamollaei H, Dehpour AR, Sheibani M, Tavangar SM, et al. The role of saffron in improvement of ocular surface disease in a mouse model of Lacrimal Gland Excision-induced dry eye disease. Exp Eye Res 2022;221:109127.

Panickar KS. Beneficial effects of herbs, spices and medicinal plants on the metabolic syndrome, brain and cognitive function. Cent Nerv Syst Agents Med Chem 2013;13:13-29.

Farid A, Sheibani M, Shojaii A, Noori M, Motevalian M. Evaluation of anti-inflammatory effects of leaf and seed extracts of Plantago major on acetic acid-induced ulcerative colitis in rats. J Ethnopharmacol 2022;298:115595.

Bagheri G, Ayatollahi SA, Ramí­rez-Alarcón K, Salehi B, Mohammadi R, et al. Phytochemical screening of Alstonia venenata leaf and bark extracts and their antimicrobial activities. Cell Mol Biol 2020;66:224-231.

Yousefi-Manesh H, Dehpour AR, Nabavi SM, Khayatkashani M, Asgardoon MH, et al. Therapeutic effects of hydroalcoholic extracts from the ancient apple mela rosa dei monti sibillini in transient global ischemia in rats. Pharmaceuticals 2021;14:1106.

Sheibani M, Nayernouri T, Dehpour AR. Herbal medicines and other traditional remedies in iran - a tragedy unfolds. Arch Iran Med 2018;21:312-314.

Chang Chien GC, Stogicza A. Chapter 17 - Regenerative Medicine. In: Pangarkar S, Pham QG, Eapen BC, editors. Pain Care Essentials and Innovations. Elsevier. 2021; pp 245-253.

Andersson KE, Christ GJ. 15 - Regenerative pharmacology and bladder regeneration. In: Denstedt J, Atala A, editors. Biomaterials and Tissue Engineering in Urology. Woodhead Publishing. 2009; pp 322-333.

Sampogna G, Guraya SY, Forgione A. Regenerative medicine: historical roots and potential strategies in modern medicine. J Microsc Ultrastruct 2015;3:101-107.

Polykandriotis E, Popescu LM, Horch RE. Regenerative medicine: then and now--an update of recent history into future possibilities. J Cell Mol Med 2010;14:2350-2358.

Furth ME, Atala A. Chapter 6 - Tissue Engineering: Future Perspectives. In: Lanza R, Langer R, Vacanti J, editors. Principles of Tissue Engineering (Fourth Edition). Boston: Academic Press. 2014; pp 83-123.

Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther 2019;10:68.

Ude CC, Miskon A, Idrus RBH, Abu Bakar MB. Application of stem cells in tissue engineering for defense medicine. Mil Med Res 2018;5:7.

Podgorski I. Future of anticathepsin K drugs: dual therapy for skeletal disease and atherosclerosis? Future Med Chem 2009;1:21-34.

Lu Y, Zhang W, Wang J, Yang G, Yin S, et al. Recent advances in cell sheet technology for bone and cartilage regeneration: from preparation to application. Int J Oral Sci 2019;11:17.

Barrère F, van Blitterswijk CA, de Groot K. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed 2006;1:317-332.

Ślósarczyk A, Paszkiewicz Z, Paluszkiewicz C. FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. J Mol Struct 2005;744:657-661.

Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 2020;11:492.

Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med 2011;9:66.

Griffin M, Iqbal SA, Bayat A. Exploring the application of mesenchymal stem cells in bone repair and regeneration. J Bone Joint Surg Br 2011;93:427-434.

Jo CH, Lee YG, Shin WH, Kim H, Chai JW, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32:1254-1266.

Saud B, Malla R, Shrestha K. A Review on the effect of plant extract on mesenchymal stem cell proliferation and differentiation. Stem Cells Int 2019;2019:7513404.

Chun J-S, Oh H-H, Yang S-Y, Park M-Y. Wnt signaling in cartilage development and degeneration. BMB Reports 2008;41:485-494.

Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8:739-750.

Guo X, Mak KK, Taketo MM, Yang Y. The Wnt/β-catenin pathway interacts differentially with PTHrP signaling to control chondrocyte hypertrophy and final maturation. PloS One. 2009;4:e6067.

Lefebvre V, Dvir-Ginzberg M. SOX9 and the many facets of its regulation in the chondrocyte lineage. Connect Tissue Res 2017;58:2-14.

Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, et al. Interactions between Sox9 and β-catenin control chondrocyte differentiation. Genes Dev 2004;18:1072-1087.

Guo P, Shi Zl, Liu A, Lin T, Bi F, et al. Effects of cartilage oligomeric matrix protein on bone morphogenetic protein‐2‐induced differentiation of mesenchymal stem cells. Orthop Surg 2014;6:280-287.

Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, et al. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proceed Natl Acad Sci 2005;102:5062-5067.

van der Kraan PM, Blaney Davidson EN, van den Berg WB. Bone morphogenetic proteins and articular cartilage: to serve and protect or a wolf in sheep clothing’s? Osteoarthr Cartil 2010;18:735-741.

Yoon BS, Pogue R, Ovchinnikov DA, Yoshii I, Mishina Y, et al. BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. 2006;133:4667-4678.

Derynck R, Zhang Y, Feng X-H. Smads: transcriptional activators of TGF-β responses. Cell 1998;95:737-740.

Wang Wj, Sun C, Liu Z, Sun X, Zhu F, et al. Transcription factor r unx2 in the low bone mineral density of girls with adolescent idiopathic scoliosis. Orthop Surg 2014;6:8-14.

Javed A, Bae J-S, Afzal F, Gutierrez S, Pratap J, et al. Structural coupling of Smad and Runx2 for execution of the BMP2 osteogenic signal. J Biol Chem 2008;283:8412-8422.

Xu J, Wu HF, Ang ES, Yip K, Woloszyn M, et al. NF-κB modulators in osteolytic bone diseases. Cytokine Growth Factor Rev 2009;20:7-17.

Wehling N, Palmer G, Pilapil C, Liu F, Wells J, et al. Interleukin‐1β and tumor necrosis factor α inhibit chondrogenesis by human mesenchymal stem cells through NF‐κB–dependent pathways. Arthritis Rheum 2009;60:801-812.

Jimi E, Fei H, Nakatomi C. NF-κB Signaling Regulates Physiological and Pathological Chondrogenesis. Int J Mol Sci 2019;20:6275.

Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017;2:1-9.

Nezamoleslami S, Sheibani M, Dehpour AR, Mobasheran P, Shafaroodi H. Glatiramer acetate attenuates renal ischemia reperfusion injury in rat model. Exp Mol Pathol 2020;112:104329.

Rashidian A, Mohammadi S, Hamaneh AM, Chaboki A, Shayan M, et al. Buspirone ameliorates colon inflammation in tnbs-induced rat acute colitis: the involvement of TLR4/NF-kB pathway. Drug Res (Stuttg) 2022;72:449-456.

Wu S, Fadoju D, Rezvani G, De Luca F. Stimulatory effects of insulin-like growth factor-I on growth plate chondrogenesis are mediated by nuclear factor-κB p65. J Biol Chem 2008;283:34037-34044.

Wu S, Morrison A, Sun H, De Luca F. Nuclear factor-κB (NF-κB) p65 interacts with Stat5b in growth plate chondrocytes and mediates the effects of growth hormone on chondrogenesis and on the expression of insulin-like growth factor-1 and bone morphogenetic protein-2. J Biol Chem 2011;286:24726-24734.

Caron M, Emans P, Surtel D, Cremers A, Voncken J-W, et al. 168 An early inflammatory response determines the onset of chondrogenesis. Osteoarthr Cartil 2010:S82.

Wang CY, Chen LL, Kuo PY, Chang JL, Wang YJ, et al. Apoptosis in chondrogenesis of human mesenchymal stem cells: effect of serum and medium supplements. Apoptosis 2010;15:439-449.

Shayan M, Eslami F, Khosravi A, Rashidian A, Jafari RM, et al. The possible protective effects of ondansetron and tropisetron on optic nerve crush injury in rats. Drug Res (Stuttg) 2023;73:88-94.

Buhrmann C, Honarvar A, Setayeshmehr M, Karbasi S, Shakibaei M, et al. Herbal remedies as potential in cartilage tissue engineering: an overview of new therapeutic approaches and strategies. Molecules 2020;25:3075.

Buhrmann C, Mobasheri A, Matis U, Shakibaei M. Curcumin mediated suppression of nuclear factor-κB promotes chondrogenic differentiation of mesenchymal stem cells in a high-density co-culture microenvironment. Arthritis Res Ther 2010;12:1-15.

Shakibaei M, Schulze-Tanzil G, John T, Mobasheri A. Curcumin protects human chondrocytes from IL-1β-induced inhibition of collagen type II and β1-integrin expression and activation of caspase-3: an immunomorphological study. Ann Anat 2005;187:487-497.

Buhrmann C, Popper B, Aggarwal BB, Shakibaei M. Resveratrol downregulates inflammatory pathway activated by lymphotoxin α (TNF-β) in articular chondrocytes: Comparison with TNF-α. PLoS One. 2017;12:e0186993.

Buhrmann C, Shayan P, Aggarwal BB, Shakibaei M. Evidence that TNF-β (lymphotoxin α) can activate the inflammatory environment in human chondrocytes. Arthr Res Ther 2013;15:1-14.

Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 2008;46:409-420.

Tjendraputra E, Tran VH, Liu-Brennan D, Roufogalis BD, Duke CC. Effect of ginger constituents and synthetic analogues on cyclooxygenase-2 enzyme in intact cells. Bioorg Chem 2001;29:156-163.

Shen C-L, Hong K-J, Kim SW. Effects of ginger (Zingiber officinale Rosc.) on decreasing the production of inflammatory mediators in sow osteoarthrotic cartilage explants. J Med Food 2003;6:323-328.

Shen C-L, Hong K-J, Kim SW. Comparative effects of ginger root (Zingiber officinale Rosc.) on the production of inflammatory mediators in normal and osteoarthrotic sow chondrocytes. J Med Food 2005;8:149-153.

Hosseinzadeh A, Bahrampour Juybari K, Fatemi MJ, Kamarul T, Bagheri A, et al. Protective effect of ginger (zingiber officinale roscoe) extract against oxidative stress and mitochondrial apoptosis induced by interleukin-1β in cultured chondrocytes. Cells Tissues Organs 2017;204:241-250.

Ming LG, Chen KM, Xian CJ. Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J Cell Physiol 2013;228:513-521.

Mi B, Wang J, Liu Y, Liu J, Hu L, et al. Icariin activates autophagy via down-regulation of the NF-κB signaling-mediated apoptosis in chondrocytes. Front Pharmacol 2018;9:605.

Wang ZC, Sun HJ, Li KH, Fu C, Liu MZ. Icariin promotes directed chondrogenic differentiation of bone marrow mesenchymal stem cells but not hypertrophy in vitro. Exp Ther Med 2014;8:1528-1534.

Liu M-H, Sun J-S, Tsai S-W, Sheu S-Y, Chen M-H. Icariin protects murine chondrocytes from lipopolysaccharide-induced inflammatory responses and extracellular matrix degradation. Nutr Res 2010;30:57-65.

Long L, Soeken K, Ernst E. Herbal medicines for the treatment of osteoarthritis: a systematic review. Rheumatology 2001;40:779-793.

Kabiri A, Esfandiari E, Hashemibeni B, Kazemi M, Mardani M, et al. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture. Biochem Biophys Res Commun 2012;424:234-238.

Khanna D, Sethi G, Ahn KS, Pandey MK, Kunnumakkara AB, et al. Natural products as a gold mine for arthritis treatment. Curr Opin Pharmacol 2007;7:344-351.

Hashemibeni B, Valiani A, Esmaeli M, Kazemi M, Aliakbari M, et al. Comparison of the efficacy of piascledine and transforming growth factor β1 on chondrogenic differentiation of human adipose-derived stem cells in fibrin and fibrin-alginate scaffolds. Iran J Basic Med Sci 2018;21:212-218.

Boileau C, Martel-Pelletier J, Caron J, Msika P, Guillou GB, et al. Protective effects of total fraction of avocado/soybean unsaponifiables on the structural changes in experimental dog osteoarthritis: inhibition of nitric oxide synthase and matrix metalloproteinase-13. Arthr Res Ther 2009;11:1-9.

Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 2000;48:4581-4589.

Akhtar N, Haqqi TM. Current nutraceuticals in the management of osteoarthritis: a review. Ther Adv Musculoskelet Dis 2012;4:181-207.

Ahmed S, Wang N, Hafeez BB, Cheruvu VK, Haqqi TM. Punica granatum L. extract inhibits IL-1β–Induced expression of matrix metalloproteinases by inhibiting the activation of MAP kinases and NF-κB in human chondrocytes in vitro. J Nutr 2005;135:2096-2102.

Rasheed Z, Akhtar N, Haqqi TM. Pomegranate extract inhibits the interleukin-1β-induced activation of MKK-3, p38α-MAPK and transcription factor RUNX-2 in human osteoarthritis chondrocytes. Arthr Res Ther 2010;12:1-13.

Ghoochani N, Karandish M, Mowla K, Haghighizadeh MH, Jalali MT. The effect of pomegranate juice on clinical signs, matrix metalloproteinases and antioxidant status in patients with knee osteoarthritis. J Sci Food Agric 2016;96:4377-4381.

Meng X, Zhou J, Zhao C-N, Gan R-Y, Li H-B. Health benefits and molecular mechanisms of resveratrol: A narrative review. Foods 2020;9:340.

Shakibaei M, Harikumar KB, Aggarwal BB. Resveratrol addiction: to die or not to die. Mol Nutr Food Res 2009;53:115-128.

Csaki C, Keshishzadeh N, Fischer K, Shakibaei M. Regulation of inflammation signalling by resveratrol in human chondrocytes in vitro. Biochemi Pharmacol 2008;75:677-687.

Subbaramaiah K, Chung WJ, Michaluart P, Telang N, Tanabe T, et al. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem 1998;273:21875-218782.

Luo L-k, Wei Q-j, Liu L, Zheng L, Zhao J-M. Andrographolide enhances proliferation and prevents dedifferentiation of rabbit articular chondrocytes: an in vitro study. Evid Based Complement Alternat Med 2015;2015:984850.

Lin P-C, Chang L-F, Liu P-Y, Lin S-Z, Wu W-C, et al. Botanical drugs and stem cells. Cell Transplant 2011;20:71-83.

Choi J-H, Kim D-Y, Yoon J-H, Youn H-Y, Yi J, et al. Effects of SKI 306X, a new herbal agent, on proteoglycan degradation in cartilage explant culture and collagenase-induced rabbit osteoarthritis model. Osteoarthr Cartil 2002;10:471-478.

Lee SW, Chung WT, Choi SM, Kim KT, Yoo KS, et al. Clematis mandshurica protected to apoptosis of rat chondrocytes. J Ethnopharmacol 2005;101:294-298.

Cai B, Zhang A-g, Zhang X, Ge W-J, Dai G-D, et al. Promoting effects on proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells by four “kidney-tonifying” traditional Chinese herbs. BioMed Res Int 2015;2015:792161.

Zhang J-F, Li G, Chan C-Y, Meng C-l, Lin MC-M, et al. Flavonoids of Herba Epimedii regulate osteogenesis of human mesenchymal stem cells through BMP and Wnt/β-catenin signaling pathway. Mol Cell Endocrinol 2010;314:70-74.

Wu K-C, Weng H-K, Hsu Y-S, Huang P-J, Wang Y-K. Aqueous extract of Arctium lappa L. root (burdock) enhances chondrogenesis in human bone marrow-derived mesenchymal stem cells. BMC Complement Med Ther 2020;20:1-14.

Ng L-J, Wheatley S, Muscat GE, Conway-Campbell J, Bowles J, et al. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol 1997;183:108-121.

Li H, Haudenschild DR, Posey K, Hecht J, Di Cesare P, et al. Comparative analysis with collagen type II distinguishes cartilage oligomeric matrix protein as a primary TGFβ-responsive gene. Osteoarthr Cartil 2011;19:1246-1253.

Maepa M, Ssemakalu CC, Motaung KS. The Potential Chondrogenic Effect of Eucomis autumnalis Aqueous Extracts on Porcine Adipose-Derived Mesenchymal Stem Cells. Tissue Eng Part A 2019;25:1137-1145.

Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, et al. Osteoblast-osteoclast interactions. Connect Tissue Res 2018;59:99-107.

Chen G, Deng C, Li Y-P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 2012;8:272-288.

Negishi-Koga T, Takayanagi H. Mysteries in Ca2+ signaling during osteoclast differentiation. IBMS BoneKEy. 2009;6:301.

Tomomura M, Hasegawa H, Suda N, Sakagami H, Tomomura A. Serum calcium-decreasing factor, caldecrin, inhibits receptor activator of NF-κB ligand (RANKL)-mediated Ca2+ signaling and actin ring formation in mature osteoclasts via suppression of Src signaling pathway. J Biol Chem 2012;287:17963-17974.

Orimo H. The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nippon Med Sch 2010;77:4-12.

Augello A, De Bari C. The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther 2010;21:1226-1238.

Celil AB, Hollinger JO, Campbell PG. Osx transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling. J Cell Biochem 2005;95:518-528.

Pinheiro CCG, Bueno DF. Alternative strategies for stem cell osteogenic differentiation. Osteogenesis and Bone Regeneration. IntechOpen. 2018.

Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. cell 1997;89:747-754.

Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. cell 1997;89:755-764.

Banerjee C, McCabe LR, Choi JY, Hiebert SW, Stein JL, et al. Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone‐specific complex. J Cell Biochem 1997;66:1-8.

Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 1999;19:2435-2444.

Wagner EF, Nebreda ÁR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 2009;9:537-549.

Xiao G, Jiang D, Thomas P, Benson MD, Guan K, et al. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem 2000;275:4453-4459.

Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene 2004;341:19-39.

Habas R, Dawid IB. Dishevelled and Wnt signaling: is the nucleus the final frontier? J Biol 2005;4:1-4.

Arvidson K, Abdallah B, Applegate L, Baldini N, Cenni E, et al. Bone regeneration and stem cells. J Cell Mol Med 2011;15:718-746.

Case N, Rubin J. Beta-catenin--a supporting role in the skeleton. J Cell Biochemi 2010;110:545-553.

Kang S, Bennett CN, Gerin I, Rapp LA, Hankenson KD, et al. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ. J Biol Chem 2007;282:14515-14524.

Tang N, Song WX, Luo J, Luo X, Chen J, et al. BMP‐9‐induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/β‐catenin signalling. J Cell Mol Med 2009;13:2448-2464.

Luo Q, Kang Q, Si W, Jiang W, Park JK, et al. Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J Biol Chem 2004;279:55958-55968.

Houschyar KS, Tapking C, Borrelli MR, Popp D, Duscher D, et al. Wnt pathway in bone repair and regeneration – what do we know so far. Front Cell Dev Biol 2018;6:170.

Zhou Y, Hartemink AE, Shi Z, Liang Z, Lu Y. Land use and climate change effects on soil organic carbon in North and Northeast China. Sci Total Environ 2019;647:1230-1238.

Lee H, Son J, Yi G, Koo H, Park JB. Cellular viability and osteogenic differentiation potential of human gingiva‑derived stem cells in 2D culture following treatment with anionic, cationic, and neutral liposomes containing doxorubicin. Expe Ther Med 2018;16:4457-4462.

Chen L, Zou X, Zhang R-X, Pi C-J, Wu N, et al. IGF1 potentiates BMP9-induced osteogenic differentiation in mesenchymal stem cells through the enhancement of BMP/Smad signaling. BMB Rep 2016;49:122-127.

Kim B-S, Kim Y-C, Zadeh H, Park Y-J, Pi S-H, et al. Effects of the dichloromethane fraction of Dipsaci Radix on the osteoblastic differentiation of human alveolar bone marrow-derived mesenchymal stem cells. Biosci Biotechnol Biochem 2011;75:13-19.

Tseng PC, Hou SM, Chen RJ, Peng HW, Hsieh CF, et al. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res 2011;26:2552-2563.

Rosen CJ. Bone remodeling, energy metabolism, and the molecular clock. Cell Metab 2008;7:7-10.

Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303:2011-2015.

Zhou H, Shang L, Li X, Zhang X, Gao G, et al. RETRACTED: Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells. Expe Cell Res 2009;315:2953-2962.

Fayemi OE, Ekennia AC, Katata-Seru L, Ebokaiwe AP, Ijomone OM, et al. Antimicrobial and wound healing properties of polyacrylonitrile-moringa extract nanofibers. ACS Omega 2018;3:4791-4797.

Barku VYA, Boye A, Ayaba S. Phytochemical screening and assessment of wound healing activity of the leaves of Anogeissus leiocarpus. Eur J Exp Biol 2013;3.

Mahmoudi Z, Soleimani M, Saidi A, Khamisipour G, Azizsoltani A. Effects of Foeniculum vulgare ethanol extract on osteogenesis in human mecenchymal stem cells. Avicenna J phytomed 2013;3:135-142.

Lavrador P, Gaspar VM, Mano JF. Bioinspired bone therapies using naringin: applications and advances. Drug Discov Today 2018;23:1293-1304.

Wang H, Li C, Li J, Zhu Y, Jia Y, et al. Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells. Iran J Basic Med Sci 2017;20:408-414.

Liu M, Li Y, Yang ST. Effects of naringin on the proliferation and osteogenic differentiation of human amniotic fluid-derived stem cells. J Tissue Eng Regen Med 2017;11:276-284.

Li S, Zhou H, Hu C, Yang J, Ye J, et al. Total flavonoids of rhizoma drynariae promotes differentiation of osteoblasts and growth of bone graft in induced membrane partly by activating Wnt/β-Catenin signaling pathway. Front Pharmacol 2021;12:675470.

Zhang J-F, Li G, Meng C-L, Dong Q, Chan C-Y, et al. Total flavonoids of herba epimedii improves osteogenesis and inhibits osteoclastogenesis of human mesenchymal stem cells. Phytomedicine 2009;16:521-529.

Wang JY, Yin CC, Wu CC, Geng SG, Yin M. [Icaritin promotes chondrogenic differentiation of BMSCs by Wnt/β-catenin signaling pathway]. Zhongguo Zhong Yao Za Zhi 2016;41:694-699.

Qin S, Zhou W, Liu S, Chen P, Wu H. Icariin stimulates the proliferation of rat bone mesenchymal stem cells via ERK and p38 MAPK signaling. Int J Clin Exp Med 2015;8:7125-7133.

Fu S, Yang L, Hong H, Zhang R. Wnt/β-catenin signaling is involved in the Icariin induced proliferation of bone marrow mesenchymal stem cells. J Tradit Chin Med 2016;36:360-368.

Yang L, Wang NL, Cai GP. Maohuoside a promotes osteogenesis of rat mesenchymal stem cells via BMP and MAPK signaling pathways. Mol Cell Biochem 2011;358:37-44.

Okumura N, Yoshikawa T, Iida J, Nonomura A, Takakura Y. Osteogenic effect of genistein on in vitro bone formation by human bone marrow cell culture-for development of advanced bio-artificial bone. Key Engineering Materials. Trans Tech Publ. 2005.

Dai J, Li Y, Zhou H, Chen J, Chen M, et al. Genistein promotion of osteogenic differentiation through BMP2/SMAD5/RUNX2 signaling. Int J Biol Sci 2013;9:1089-1098.

Han Y, Yun S, Ko H, Lee S. Therapeutic effect of genistein-stimulated human mesenchymal stem cells in myocardial infarction. J Transplant Stem Cel Biol 2014;1:7.

Casado-Díaz A, Anter J, Dorado G, Quesada-Gómez JM. Effects of quercetin, a natural phenolic compound, in the differentiation of human mesenchymal stem cells (MSC) into adipocytes and osteoblasts. J Nutr Biochem 2016;32:151-162.

Zhou C, Lin Y. Osteogenic differentiation of adipose‐derived stem cells promoted by quercetin. Cell Prolif 2014;47:124-132.

Li Y, Wang J, Chen G, Feng S, Wang P, et al. Quercetin promotes the osteogenic differentiation of rat mesenchymal stem cells via mitogen-activated protein kinase signaling. Exp Ther Med 2015;9:2072-2080.

Menon AH, Soundarya SP, Sanjay V, Chandran SV, Balagangadharan K, et al. Sustained release of chrysin from chitosan-based scaffolds promotes mesenchymal stem cell proliferation and osteoblast differentiation. Carbohydr Polym 2018;195:356-367.

Zeng W, Yan Y, Zhang F, Zhang C, Liang W. Chrysin promotes osteogenic differentiation via ERK/MAPK activation. Protein Cell 2013;4:539-547.

Imenshahidi M, Hosseinzadeh H. Berberis vulgaris and berberine: an update review. Phytother Res 2016;30:1745-1764.

Lee HW, Suh JH, Kim HN, Kim AY, Park SY, et al. Berberine promotes osteoblast differentiation by Runx2 activation with p38 MAPK. J Bone Miner Res 2008;23:1227-1237.

Tao K, Xiao D, Weng J, Xiong A, Kang B, et al. Berberine promotes bone marrow-derived mesenchymal stem cells osteogenic differentiation via canonical Wnt/β-catenin signaling pathway. Toxicol Lett 2016;240:68-80.

Ali TF, Hasan T. Phlorotannin-incorporated mesenchymal stem cells and their promising role in osteogenesis imperfecta. J Medical Hypotheses Ideas 2012;6:85-89.

Lee H, Song Y, Park YH, Uddin MS, Park JB. Evaluation of the effects of Cuminum cyminum on cellular viability, osteogenic differentiation and mineralization of human bone marrow-derived stem cells. Medicina (Kaunas, Lithuania). 2021;57:38.

Tae JY, Ko Y, Park JB. Evaluation of fibroblast growth factor-2 on the proliferation of osteogenic potential and protein expression of stem cell spheroids composed of stem cells derived from bone marrow. Exp Ther Med 2019;18:326-331.

Mendi A, Yağcı BG, Kızıloğlu M, Saraç N, Uğur A, et al. Thymbra spicata var. intricata induces mesenchymal stem cell proliferation and osteogenic differentiation. Braz Arch Biol Technol 2017;60: e17160391.

Roodman G. Perspectives: Interleukin‐6: An osteotropic factor? J Bone Miner Res 1992;7:475-478.

Wei YJ, Tsai KS, Lin LC, Lee YT, Chi CW, et al. Catechin stimulates osteogenesis by enhancing PP2A activity in human mesenchymal stem cells. Osteoporos Int 2011;22:1469-1479.

Gronthos S, Brahim J, Li W, Fisher L, Cherman, N et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002;81:531-535.

Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci 2000;97:13625-13630.

Boonyagul S, Banlunara W, Sangvanich P, Thunyakitpisal P. Effect of acemannan, an extracted polysaccharide from Aloe vera, on BMSCs proliferation, differentiation, extracellular matrix synthesis, mineralization, and bone formation in a tooth extraction model. Odontology 2014;102:310-317.

Jittapiromsak N, Sahawat D, Banlunara W, Sangvanich P, Thunyakitpisal P. Acemannan, an extracted product from Aloe vera, stimulates dental pulp cell proliferation, differentiation, mineralization, and dentin formation. Tissue Eng Part A 2010;16:1997-2006.

Soares IMV, Fernandes GVO, Larissa Cordeiro C, Leite Y, Bezerra DO, et al. The influence of Aloe vera with mesenchymal stem cells from dental pulp on bone regeneration: characterization and treatment of non-critical defects of the tibia in rats. J Appl Oral Sci 2019;27:e20180103.

Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 2014;9:1-27.

Devaraj A, Karpagam T. Evaluation of anti-inflammatory activity and analgesic effect of Aloe vera leaf extract in rats. Int Res J Pharm 2011;2:103-110.

Aro A, Nishan U, Perez M, Rodrigues R, Foglio M, et al. Structural and biochemical alterations during the healing process of tendons treated with Aloe vera. Life Sci 2012;91:885-893.

Liu M, Li Y, Yang ST. Curculigoside improves osteogenesis of human amniotic fluid-derived stem cells. Stem Cells Dev 2014;23:146-154.

Cauley J, Wampler N, Barnhart J, Wu L, Allison M, et al. Incidence of fractures compared to cardiovascular disease and breast cancer: the Women’s Health Initiative Observational Study. Osteopor Int 2008;19:1717-1723.

Kulsirirat T, Honsawek S, Takeda-Morishita M, Sinchaipanid N, Leanpolchareanchai J, et al. Novel dose dependent effects of andrographolide on the enhancement of chondrogenesis and osteogenesis in human mesenchymal stem cells. Authorea Preprints 2020.

Nicolin V, Dal Piaz F, Nori SL, Narducci P, De Tommasi N. Inhibition of bone resorption by Tanshinone VI isolated from Salvia miltiorrhiza Bunge. Eur J Histochem 2010;54:e21.

Kwak HB, Sun HM, Ha H, Kim HN, Lee JH, et al. Tanshinone IIA suppresses inflammatory bone loss by inhibiting the synthesis of prostaglandin E2 in osteoblasts. Eur J Pharm 2008;601:30-37.

Kim HJ, Kim SH. Tanshinone IIA enhances BMP-2-stimulated commitment of C2C12 cells into osteoblasts via p38 activation. Amino Acids 2010;39:1217-1226.

Alaribe FN, Motaung KSCM. Medicinal plants in tissue engineering and regenerative medicine in the African continent. Tissue Eng Part A 2019;25:827-829.

Monsefi M, Parvin F, Talaei-Khozani T. Effects of pomegranate extracts on cartilage, bone and mesenchymal cells of mouse fetuses. Br J Nutr 2012;107:683-690.

Files
IssueVol 8, No 3, 2023 QRcode
SectionReview Article(s)
DOI https://doi.org/10.18502/tim.v8i3.13716
Keywords
Phytomedicine Regenerative Medicine (RM) Stem Cells Mesenchymal Stem Cells (MSCs) Osteocytes Chondrocytes

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Sheibani M, Shayan M, Jafari-Sabet M, Sharifi AM. Applications of Phytomedicines in Chondrocytes and Osteocytes Regeneration Therapy: Pre-Clinical and Clinical Studies. Trad Integr Med. 2023;8(3):299-315.